Degeneration of the Injured Cervical Cord Is Associated with Remote Changes in Corticospinal Tract Integrity and Upper Limb Impairment
نویسندگان
چکیده
BACKGROUND Traumatic spinal cord injury (SCI) leads to disruption of axons and macroscopic tissue loss. Using diffusion tensor imaging (DTI), we assessed degeneration of the corticospinal tract (CST) in the cervical cord above a traumatic lesion and explored its relationship with cervical atrophy, remote axonal changes within the cranial CST and upper limb function. METHODS Nine cervical injured volunteers with bilateral motor and sensory impairment and ten controls were studied. DTI of the cervical cord and brain provided measurements of fractional anisotropy (FA), while anatomical MRI assessed cross-sectional spinal cord area (i.e. cord atrophy). Spinal and central regions of interest (ROI) included the bilateral CST in the cervical cord and brain. Regression analysis identified correlations between spinal FA and cranial FA in the CST and disability. RESULTS In individuals with SCI, FA was significantly lower in both CSTs throughout the cervical cord and brain when compared with controls (p≤0.05). Reduced FA of the cervical cord in patients with SCI was associated with smaller cord area (p = 0.002) and a lower FA of the cranial CST at the internal capsule level (p = 0.001). Lower FA in the cervical CST also correlated with impaired upper limb function, independent of cord area (p = 0.03). CONCLUSION Axonal degeneration of the CST in the atrophic cervical cord, proximal to the site of injury, parallels cranial CST degeneration and is associated with disability. This DTI protocol can be used in longitudinal assessment of microstructural changes immediately following injury and may be utilised to predict progression and monitor interventions aimed at promoting spinal cord repair.
منابع مشابه
Retrograde Wallerian degeneration of cranial corticospinal tracts in cervical spinal cord injury patients using diffusion tensor imaging.
Diffusion tensor imaging (DTI) has the potential to reveal disruption of white matter microstructure in chronically injured spinal cords. We quantified fractional anisotropy (FA) and mean diffusivity (MD) to demonstrate retrograde Wallerian degeneration (WD) of cranial corticospinal tract (CST) in cervical spinal cord injury (SCI). Twenty-two patients with complete cervical SCI in the chronic s...
متن کاملVoxel-based analysis of grey and white matter degeneration in cervical spondylotic myelopathy
In this prospective study, we made an unbiased voxel-based analysis to investigate above-stenosis spinal degeneration and its relation to impairment in patients with cervical spondylotic myelopathy (CSM). Twenty patients and 18 controls were assessed with high-resolution MRI protocols above the level of stenosis. Cross-sectional areas of grey matter (GM), white matter (WM), and posterior column...
متن کاملAxonal integrity predicts cortical reorganisation following cervical injury
BACKGROUND Traumatic spinal cord injury (SCI) leads to disruption of axonal architecture and macroscopic tissue loss with impaired information flow between the brain and spinal cord-the presumed basis of ensuing clinical impairment. OBJECTIVE The authors used a clinically viable, multimodal MRI protocol to quantify the axonal integrity of the cranial corticospinal tract (CST) and to establish...
متن کاملThe Expression implication of GDNF in ventral horn and associated remote cortex in rhesus monkeys with hemisected spinal cord injury
Objective(s): Glial cell line-derived neurotrophic factor (GDNF) can effectively promote axonal regeneration,limit axonal retraction,and produce a statistically significant improvement in motor recovery after spinal cord injury (SCI). However, the role in primate animals with SCI is not fully cognized. Materials and Methods:18 healthy juvenile rhesuses were divided randomly into six groups, obs...
متن کاملBeta-band intermuscular coherence: a novel biomarker of upper motor neuron dysfunction in motor neuron disease
In motor neuron disease, the focus of therapy is to prevent or slow neuronal degeneration with neuroprotective pharmacological agents; early diagnosis and treatment are thus essential. Incorporation of needle electromyographic evidence of lower motor neuron degeneration into diagnostic criteria has undoubtedly advanced diagnosis, but even earlier diagnosis might be possible by including tests o...
متن کامل